Mostrando entradas con la etiqueta 3 evolución. Mostrar todas las entradas
Mostrando entradas con la etiqueta 3 evolución. Mostrar todas las entradas

lunes, 30 de agosto de 2021

Referencias bibliográficas de las teorías de la evolución

(Ciencias de Joseleg) (Biología) (Teoría de la Biología) (Teorías de la evolución) (Introducción)  (Generalidades)  (desde Grecia al Islam)  (Naturalistas y escala natural)  (Lamarckismo)  (Darwin y Wallace)  (El origen del darwinismo)  (La selección natural)  (Neodarwinismo)  (Teoría sintética de la evolución)  (Selección sexual)  (Carrera armamentista)  (Extinciones y radiaciones)  (Grandes saltos)  (Deriva genética)  (Aplicaciones)  (Debates sociales)  (Una nueva síntesis)  (Referencias bibliográficas)

 

Allison, A. C. (2002). The discovery of resistance to malaria of sickle‐cell heterozygotes. Biochemistry and Molecular Biology Education, 30(5), 279–287.

Amundson, R. (2005). The changing role of the embryo in evolutionary thought: roots of evo-devo. Cambridge University Press.

Artigas, M., Martnez, R. A., Glick, T. F., & Martínez, R. A. (2006). Negotiating Darwin: the Vatican confronts evolution, 1877–1902. JHU Press.

Asghar, A. (2013). Canadian and Pakistani Muslim teachers’ perceptions of evolutionary science and evolution education. Evolution: Education and Outreach, 6(1), 10.

Asghar, A., Wiles, J. R., & Alters, B. (2010). The origin and evolution of life in Pakistani high school biology. Journal of Biological Education, 44(2), 65–71.

Ayala, F. J. (1970). Teleological explanations in evolutionary biology. Philosophy of Science, 37(1), 1–15.

Ayala, F. J., & Avise, J. C. (2014). Essential readings in evolutionary biology. JHU Press.

Ayoub, M. M. (2005). Creation or evolution? The reception of Darwinism in modern Arab thought. Science and Religion in a Post-Colonial World: Interfaith Perspectives, 173–190.

Barricelli, N. A. (1954). Esempi numerici di processi di evoluzione. Methodos, 6(21–22), 45–68.

Bateson, P. (2005). The return of the whole organism. Journal of Biosciences, 30(1), 31–39.

Bayrakdar, M. (1983). Al-Jahiz and the rise of biological evolution. The Islamic Quarterly, 27, 307–315.

Beer, G. (1992). Forging the missing link: Interdisciplinary stories. CUP Archive.

Bender, B. (2004). Evolution and" the sex problem": American narratives during the eclipse of Darwinism. Kent State University Press.

Benton, M. J. (1983). Dinosaur success in the Triassic: a noncompetitive ecological model. The Quarterly Review of Biology, 58(1), 29–55.

Berkeley, U. (n.d.). Antibiotic resistance: delaying the inevitable - Understanding Evolution. Retrieved August 10, 2017, from https://evolution.berkeley.edu/evolibrary/article/medicine_03

Blinn, J. F., & Goodstein, D. (1985). El Universo Mecánico: el universo cuántico mecánico. USA: PBS.

Bock, W. J. (1994). Ernst Mayr, naturalist: His contributions to systematics and evolution. Biology and Philosophy, 9(3), 267–327.

Bock, W. J. (2005). Ernst Mayr at 100: A life inside and outside ornithology. Ornithological Monographs, 2–16.

Boisvert, C. A. (2005). The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature, 438(7071), 1145–1147.

Borowsky, R. (2008). Restoring sight in blind cavefish. Current Biology, 18(1), R23–R24.

Bourlière, F., & Howell, C. F. (2013). African ecology and human evolution. Routledge.

Bowler, P. J. (1975). The changing meaning of" evolution". Journal of the History of Ideas, 95–114.

Bowler, P. J. (1979). Theodor Eimer and orthogenesis: evolution by ‘definitely directed variation.’ Journal of the History of Medicine and Allied Sciences, 34(1), 40–73.

Bowler, P. J. (1989). Evolution: the history of an idea. Univ of California Press.

Bowler, P. J. (1992a). The eclipse of Darwinism: Anti-Darwinian evolution theories in the decades around 1900. JHU Press.

Bowler, P. J. (1992b). The Fontana history of the environmental sciences. Fontana press.

Bowler, P. J. (2000). Philosophy, instinct, intuition: what motivates the scientist in Search of a theory? Biology and Philosophy, 15(1), 93–101.

Bowler, P. J. (2005). Revisiting the eclipse of Darwinism. Journal of the History of Biology, 38(1), 19–32.

Brackman, A. C. (1980). A delicate arrangement: the strange case of Charles Darwin and Alfred Russel Wallace. Crown.

Braje, T. J., & Erlandson, J. M. (2013). Human acceleration of animal and plant extinctions: A Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene, 4, 14–23.

Brakefield, P. M. (2006). Evo-devo and constraints on selection. Trends in Ecology & Evolution, 21(7), 362–368.

Branch, G. (2007). Understanding creationism after Kitzmiller. BioScience, 57(3), 278–284.

Bro‐Jørgensen, J. (2016). Our Antelope Heritage–Why the Fuss? Antelope Conservation: From Diagnosis to Action, (16), 1.

Brodie III, E. D., & Brodie Jr, E. D. (1991). Evolutionary response of predators to dangerous prey‐reduction of toxicity of newts and resistance of garter snakes in island populations. Evolution, 45(1), 221–224.

Buiatti, M. (2005). Biologies, agricultures, biotechnologies. Tailoring Biotechnologies, 1(2), 9–30.

Bull, J. J., & Wichman, H. A. (2001). Applied evolution. Annual Review of Ecology and Systematics, 32(1), 183–217.

Bunzel, H. A., Anderson, J. L. R., & Mulholland, A. J. (2021). Designing better enzymes: insights from directed evolution. Current Opinion in Structural Biology, 67, 212–218.

Burgin, M., & Eberbach, E. (2010). Bounded and periodic evolutionary machines. In IEEE Congress on Evolutionary Computation (pp. 1–8). IEEE.

Burgin, M., & Eberbach, E. (2012). Evolutionary automata: Expressiveness and convergence of evolutionary computation. The Computer Journal, 55(9), 1023–1029.

Burgin, M., & Eberbach, E. (2013). Recursively Generated Evolutionary Turing Machines and Evolutionary Automata. In Artificial Intelligence, Evolutionary Computing and Metaheuristics (pp. 201–230). Springer.

Burkhardt, R. W. (2013). Lamarck, evolution, and the inheritance of acquired characters. Genetics, 194(4), 793–805.

Carroll, W. E. (2000). Creation. Evolution and Thomas Aquinas. REVUE DES QUESTIONS SCIENTIFIQUES-LOUVAIN AND PARIS-, 171(4), 319–348.

Cavalli-Sforza, L. L., Cavalli-Sforza, L., Menozzi, P., & Piazza, A. (1994). The history and geography of human genes. Princeton university press.

Charig, A. J. (1986). Archaeopteryx is not a forgery. Science, 232, 622–627.

Charles, J. (2008). Darwin’s Lost Voyage. USA: National Geographic. Retrieved from https://www.youtube.com/watch?v=x7kIPlgAx2I

Charlesworth, B., & Edwards, A. W. F. (2018). A century of variance. Significance, 15(4), 20–25.

Chen, J.-Y., Huang, D.-Y., & Li, C.-W. (1999). An early Cambrian craniate-like chordate. Nature, 402(6761), 518–522.

Churchill, F. B. (1970). Hertwig, Weismann, and the meaning of reduction division circa 1890. Isis, 61(4), 429–457.

Churchill, F. B. (2015). August Weismann. Harvard University Press.

Clark, B., Foster, J. B., & York, R. (2007). The critique of intelligent design: Epicurus, Marx, Darwin, and Freud and the materialist defense of science. Theory and Society, 36(6), 515–546.

Clarke, B. C. (1995). Edmund Brisco Ford, 23 April 1901-21 January 1988. The Royal Society.

Clutton-Brock, T. (2007). Sexual selection in males and females. Science, 318(5858), 1882–1885.

Coates, M. I. (1996). The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(03), 363–421.

Commission, F. T., & Commission, F. T. (1958). Economic report on antibiotics manufacture. United States Government Printing Office: Washington, DC.

Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014.

Dale, C., & Moran, N. A. (2006). Molecular interactions between bacterial symbionts and their hosts. Cell, 126(3), 453–465.

Danchin, A. (2008). Bacteria as computers making computers. FEMS Microbiology Reviews, 33(1), 3–26.

Darwin, C. (1866). On the Origins of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life (4th ed.). London: John Murray.

Darwin, C. (1993). The autobiography of Charles Darwin, 1809-1882: with original omissions restored. WW Norton & Company.

Darwin, C. (2018). Life and letters of Charles Darwin. Charles River Editors via PublishDrive.

Davidson, E. H. (2010). The regulatory genome: gene regulatory networks in development and evolution. Elsevier.

Denton, M., & Scott, R. (1986). Evolution: A theory in crisis.

Dietrich, M. R., & Skipper Jr, R. A. (2012). A shifting terrain: a brief history of the adaptive landscape. The Adaptive Landscape in Evolutionary Biology, 3–15.

Dobretsov, N. L., Kolchanov, N. A., & Suslov, V. V. (2008). On important stages of geosphere and biosphere evolution. In Biosphere Origin and Evolution (pp. 3–23). Springer.

Dobzhansky, T. (1949). Towards a modern synthesis. Evolution, 3(4), 376–377.

Dobzhansky, T. (2013). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 75(2), 87–91.

Dobzhansky, T., & Dobzhansky, T. G. (1982). Genetics and the Origin of Species (Vol. 11). Columbia university press.

Dorin, A., & Taylor, T. (2020). Rise of the Self-Replicators: Early Visions of Machines, AI and Robots That Can Reproduce and Evolve. In AI and Robots That Can Reproduce and Evolve. (1st ed.). Springer.

Dubois, M. E. F. T. (1894). Pithecanthropus erectus: eine menschenähnliche Übergangsform aus Java. Landesdruckerei.

Eberbach, E. (2002). On expressiveness of evolutionary computation: is EC algorithmic? In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600) (Vol. 1, pp. 564–569). IEEE.

Eberbach, E. (2005). Toward a theory of evolutionary computation. BioSystems, 82(1), 1–19.

Eberbach, E., & Burgin, M. (2009). Evolutionary automata as foundation of evolutionary computation: Larry fogel was right. In 2009 IEEE Congress on Evolutionary Computation (pp. 2149–2156). IEEE.

Eldredge, N. (1985). Unfinished synthesis: biological hierarchies and modern evolutionary thought. Oxford University Press, USA.

Ellison, P. T. (2018). The evolution of physical anthropology. American Journal of Physical Anthropology, 165(4), 615–625.

Endler, J. A., & McLellan, T. (1988). The processes of evolution: toward a newer synthesis. Annual Review of Ecology and Systematics, 19(1), 395–421.

Ercit, K., & Gwynne, D. T. (2015). Darwinian balancing selection: predation counters sexual selection in a wild insect. Evolution, 69(2), 419–430.

Erwin, D. H., & Tweedt, S. (2012). Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evolutionary Ecology, 26(2), 417–433.

Falcon, A. (2006). Aristotle on causality.

Farber, P. (2003). Teaching evolution & the nature of science. The American Biology Teacher, 65(5), 347–354.

Fisher, A. M., Cornell, S. J., Holwell, G. I., & Price, T. A. R. (2018). Sexual cannibalism and population viability. Ecology and Evolution.

Flannelly, K. J. (2017). Greek Philosophy, Early Christian Theology, Purpose, and Change. In Religious Beliefs, Evolutionary Psychiatry, and Mental Health in America (pp. 11–18). Springer.

Fleischner, T. L. (2005). Natural history and the deep roots of resource management. Nat. Resources J., 45, 1.

Ford, E. B. (1945). Polymorphism. Biological Reviews, 20(2), 73–88.

Franklin, J. (1986). Aristotle on species variation. Philosophy, 61(236), 245–252.

Fraser, A. S. (1958). Monte Carlo analyses of genetic models. Nature, 181(4603), 208–209.

Frohlich, D. R. (2014). Biology, Peirce, and Biosemiotics: Commentaires’ Cénoscopic’d’un Biologiste. The American Journal of Semiotics, 30(1/2), 173–188.

Futuyma, D. (2004). Natural selection: How evolution works. Retrieved September, 26, 2015.

Futuyma, D. (2005). Evolution (1st ed.). Sunderland: Sinauer.

Futuyma, D. J. (2005). Evolution (1st ed.). Sunderland: Sinauer.

Futuyma, D. J. (2015). Can modern evolutionary theory explain macroevolution? In Macroevolution (pp. 29–85). Springer.

Gayon, J. (1996). The individuality of the species: a Darwinian theory?—from Buffon to Ghiselin, and back to Darwin. Biology and Philosophy, 11(2), 215–244.

Gilbert, S. F., Opitz, J. M., & Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173(2), 357–372.

Gingerich, P. D., Smith, B. H., & Simons, E. L. (1990). Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science, 249(4965), 154–157.

Gordon, S. (2015). Design of Experiments. In Modeling and Simulation in the Systems Engineering Life Cycle (pp. 187–200). Springer.

Gotthelf, A. (1999). Darwin on Aristotle. Journal of the History of Biology, 32(1), 3–30.

Gould, Stephen J. (1987). Is a new and general theory of evolution emerging? In Self-Organizing Systems (pp. 113–130). Springer.

Gould, Stephen Jay. (1982). Darwinism and the expansion of evolutionary theory. Science, 216(4544), 380–387.

Grabowski, M. W. (2013). Hominin obstetrics and the evolution of constraints. Evolutionary Biology, 40(1), 57–75.

Greggs, T. (2009). Barth, Origen, and universal salvation: Restoring particularity. Oxford University Press.

Gross, J. B., Borowsky, R., & Tabin, C. J. (2009). A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genetics, 5(1), e1000326.

Guiness, P. (2008). Evolutions, The Walking Whale. USA: National Geographic.

Haldane, J. B. S. (1930). A mathematical theory of natural and artificial selection.(Part VI, Isolation.). In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 26, pp. 220–230). Cambridge University Press.

Haldane, J. B. S. (1931). A mathematical theory of natural and artificial selection. Part VII. Selection intensity as a function of mortality rate. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 27, pp. 131–136). Cambridge University Press.

Haldane, J. B. S. (1932). A mathematical theory of natural and artificial selection. Part IX. Rapid selection. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 28, pp. 244–248). Cambridge University Press.

Haldane, J. B. S. (1964). A defense of beanbag genetics. Perspectives in Biology and Medicine, 7(3), 343–360.

Hall, B. K. (2003). Evo-Devo: evolutionary developmental mechanisms. International Journal of Developmental Biology, 47(7–8), 491–495.

Hall, B. K. (2012). Evolutionary developmental biology. Springer Science & Business Media.

Hameed, S. (2008). Bracing for Islamic creationism. Science, 322(5908), 1637–1638.

Hanifin, C. T., Yotsu-Yamashita, M., Yasumoto, T., & Brodie, E. D. (1999). Toxicity of dangerous prey: variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. Journal of Chemical Ecology, 25(9), 2161–2175.

Harman, O. S. (2009). Neo-Darwinism and Random Variation, or Why It’s Important to Read Darwin Carefully. In Divine Action And Natural Selection: Science, Faith and Evolution (pp. 138–152). World Scientific.

Harzsch, S., & Hafner, G. (2006). Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Structure & Development, 35(4), 319–340.

Hewes, G. W. (1993). A history of speculation on the relation between tools and language. Tools, Language and Cognition in Human Evolution, 20–31.

Heywood, J. S. (1989). Sexual selection by the handicap mechanism. Evolution, 1387–1397.

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.

Hossfeld, U., & Olsson, L. (2002). From the modern synthesis to Lysenkoism, and back? Science, 297(5578), 55–56.

Hoßfeld, U., & Olsson, L. (2003). The road from Haeckel: The Jena tradition in evolutionary morphology and the origins of “Evo-Devo.” Biology and Philosophy, 18(2), 285–307.

Hoßfeld, U., Olsson, L., & UH, E. H. H. (2001). Between science and politics: Axolotl research at Jena University, Germany, during the Lysenko era (1950s–1960s). Axolotl News, 29, 12–15.

Hou, Lianhai, Martin, L. D., Zhou, Z., & Feduccia, A. (1996). Early adaptive radiation of birds: evidence from fossils from northeastern China. Science, 274(5290), 1164–1167.

Hou, Liping, Faraci, G., Chen, D. T. W., Kassem, L., Schulze, T. G., Shugart, Y. Y., & McMahon, F. J. (2013). Amish revisited: next-generation sequencing studies of psychiatric disorders among the Plain people. Trends in Genetics, 29(7), 412–418.

Huneman, P. (2010). Assessing the prospects for a return of organisms in evolutionary biology. History and Philosophy of the Life Sciences, 341–371.

Huttenlocker, A. K., Grossnickle, D. M., Kirkland, J. I., Schultz, J. A., & Luo, Z.-X. (2018). Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature, 558(7708), 108.

Huxley, J. (1929). Julian Huxley. Biologist and Statesman Ofsci.

Huxley, J. (1942). Evolution the modern synthesis. George Allen and Unwin.

Huxley, J., Hardy, A. C., & Ford, E. B. (1954). Evolution as a Process. Geroge Allen And Unwin: London.

Jäckel, C., Kast, P., & Hilvert, D. (2008). Protein design by directed evolution. Annu. Rev. Biophys., 37, 153–173.

Jamshidi, M. (2003). Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1809), 1781–1808.

Jang, J. (2017). Doctrine of theodicy in a scientific age: examining the evolutionary theology of John Haught and the Daoist philosophy of Zhuangzi.

Jin, X. (2019). Translation and transmutation: the Origin of Species in China. The British Journal for the History of Science, 52(1), 117–141.

Kaiser, J. (1997). Fingering a Genetic Bottleneck. Science, 277(5330), 1205.

Kalkvik, H. M., Stout, I. J., & Parkinson, C. L. (2012). Unraveling natural versus anthropogenic effects on genetic diversity within the southeastern beach mouse (Peromyscus polionotus niveiventris). Conservation Genetics, 13(6), 1653–1664.

Kardong, K. V. (2014). Vertebrates: Comparative Anatomy, Function, Evolution (7th ed.). McGraw-Hill Education.

Katsiaficas, G. (1999). Ibn Khaldun: a dialectical philosopher for the 21st century. New Political Science, 21(1), 45–57.

Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217(5129), 624–626.

King, G. M. (1990). Dicynodonts and the end Permian event.

Kirkwood, T. B. L., & Cremer, T. (1982). Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Human Genetics, 60(2), 101–121.

Koonin, E. V. (2009). Towards a postmodern synthesis of evolutionary biology. Taylor & Francis.

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2), 87–112.

Kureichik, V. V, Kureichik, V. M., & Sorokoletov, P. V. (2007). Analysis and a survey of evolutionary models. Journal of Computer and Systems Sciences International, 46(5), 779–791.

Kutschera, U. (2011). From the scala naturae to the symbiogenetic and dynamic tree of life. Biology Direct, 6(1), 33.

Kutschera, U., & Niklas, K. J. (2004). The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften, 91(6), 255–276.

Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., … Odling-Smee, J. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences, 282(1813), 20151019.

Lamarck, J. B. P. (2013). Zoological philosophy. Theclassics Us.

Laporte, L. F. (2000). George Gaylord Simpson: paleontologist and evolutionist. Columbia University Press.

Largent, M. A. (2009). The so-called eclipse of Darwinism. Transactions of the American Philosophical Society, 99(1), 3–21.

Larose, C., Parker, D. J., & Schwander, T. (2018). Fundamental and realized feeding niche breadths of sexual and asexual stick-insects. BioRxiv, 377176.

Laubichler, Manfred D, & Renn, J. (2015). Extended evolution: A conceptual framework for integrating regulatory networks and niche construction. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324(7), 565–577.

Laubichler, Manfred D, & Rheinberger, H.-J. (2006). August Weismann and theoretical biology. Biological Theory, 1(2), 195–198.

Laubichler, Manfred Dietrich, & Maienschein, J. (2007). From embryology to evo-devo: a history of developmental evolution. Mit Press Cambridge, MA.

Layton, R. A. (2004). Didymus the Blind and his circle in late-antique Alexandria: virtue and narrative in biblical scholarship. University of Illinois Press.

Leberg, P. L., & Vrijenhoek, R. C. (1994). Variation among desert topminnows in their susceptibility to attack by exotic parasites. Conservation Biology, 8(2), 419–424.

Levit, G. S., & Olsson, L. (2006). Evolution on rails”: mechanisms and levels of orthogenesis. Ann Hist Philos Biol, 11, 99–138.

Lillegraven, J. A. (1979). Reproduction in Mesozoic mammals. Mesozoic Mammals: The First Two–Thirds of the Mammalian History, 259–276.

Lindberg, D. R. (2007). The Evolving World: Evolution in Everyday Life. American Institute of Biological Sciences.

Liow, L. H., Van Valen, L., & Stenseth, N. C. (2011). Red Queen: from populations to taxa and communities. Trends in Ecology & Evolution, 26(7), 349–358.

Little, A. C., Jones, B. C., Burt, D. M., & Perrett, D. I. (2007). Preferences for symmetry in faces change across the menstrual cycle. Biological Psychology, 76(3), 209–216.

Livingstone, F. B. (1983). The malaria hypothesis. Distribution and Evolution of Hemoglobin and Globin Loci, 1.

López-Wilchis, R., Méndez-Rodríguez, A., Juste, J., Serrato-Díaz, A., Rodríguez-Gómez, F., & Guevara-Chumacero, L. M. (2021). Genetic Consequences of Forest Fragmentation in a Widespread Forest Bat (Natalus mexicanus, Chiroptera: Natalidae). Diversity, 13(4), 140.

Lovegrove, B. G., Lobban, K. D., & Levesque, D. L. (2014). Mammal survival at the Cretaceous–Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs. Proc. R. Soc. B, 281(1796), 20141304.

Lu, J., Zhu, M., Long, J. A., Zhao, W., Senden, T. J., Jia, L., & Qiao, T. (2012). The earliest known stem-tetrapod from the Lower Devonian of China. Nature Communications, 3, 1160.

Lumley, A. J., Michalczyk, Ł., Kitson, J. J. N., Spurgin, L. G., Morrison, C. A., Godwin, J. L., … Chapman, T. (2015). Sexual selection protects against extinction. Nature, 522(7557), 470.

Mahanti, S. (2015). John Burdon Sanderson Haldane.

Maher, B. (2009). Evolution: Biology’s next top model? Nature News, 458(7239), 695–698.

Manning, A. (2001). Time, life and the Earth. Geological Society, London, Special Publications, 190(1), 253–264.

Marchesini, R., & Celentano, M. (2021). From Evolutionary Epistemology to an Extended Evolutionary Synthesis. In Critical Ethology and Post-Anthropocentric Ethics (pp. 31–60). Springer.

Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Harvard University Press.

Mayr, E. (1997). This is biology: the science of the living world. Universities Press.

Meyer, S. S. (1992). Aristotle, teleology, and reduction. The Philosophical Review, 101(4), 791–825.

Michael, R., & Ruse, M. (2009). Darwin and design: does evolution have a purpose? Harvard University Press.

Miller, J. D., Scott, E. C., & Okamoto, S. (2006). Public acceptance of evolution. Science-New York Then Washington-, 313(5788), 765.

Montavon, T., Le Garrec, J.-F., Kerszberg, M., & Duboule, D. (2008). Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes & Development, 22(3), 346–359.

Morris, S. C. (2000). The Cambrian “explosion”: slow-fuse or megatonnage? Proceedings of the National Academy of Sciences, 97(9), 4426–4429.

Müller, G. B. (2007). Evo–devo: extending the evolutionary synthesis. Nature Reviews Genetics, 8(12), 943–949.

Müller, G. B. (2017). Why an extended evolutionary synthesis is necessary. Interface Focus, 7(5), 20170015.

Müller, G. B. (2021). Evo-devo’s contributions to the extended evolutionary synthesis. Evolutionary Developmental Biology: A Reference Guide, 1127–1138.

Newman, S. A., & Müller, G. B. (2006). 2 Genes and Form: Inherency in the Evolution of Developmental Mechanisms. In Genes in Development (pp. 38–74). Duke University Press.

Nicoglou, A. (2018). The Concept of Plasticity in the History of the Nature-Nurture Debate in the Early Twentieth Century. In The Palgrave Handbook of Biology and Society (pp. 97–122). Springer.

Niklas, K. J. (1997). The evolutionary biology of plants. University of Chicago Press.

Niklas, K. J., & Kutschera, U. (2014). Amphimixis and the individual in evolving populations: does Weismann’s Doctrine apply to all, most or a few organisms? Naturwissenschaften, 101(5), 357–372.

Nordmann, A. (1992). Darwinians at war Bateson’s place in histories of Darwinism. Synthese, 91(1–2), 53–72.

Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., & Kumar, K. (2004). Eocene evolution of whale hearing. Nature, 430(7001), 776.

O’Corry-Crowe, G. (2008). Climate change and the molecular ecology of Arctic marine mammals. Ecological Applications, 18(sp2), S56–S76.

O’Neill, M. B., Kitchen, A., Zarley, A., Aylward, W., Eldholm, V., & Pepperell, C. S. (2018). Global Phylogeography of Mycobacterium Tuberculosis Reveals Role of Recent Human History in Pathogen Dispersal. In AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY (Vol. 165, p. 193). WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA.

Ochoa, J. G. D. (2018). Elastic multi-scale mechanisms: Computation and biological evolution. Journal of Molecular Evolution, 86(1), 47–57.

Ohta, T., & Gillespie, J. H. (1996). Development of neutral and nearly neutral theories. Theoretical Population Biology, 49(2), 128–142.

Oldroyd, D. (1988). Evolution: The History of an Idea. JSTOR.

Onwubolu, G. C., & Babu, B. V. (2013). New optimization techniques in engineering (Vol. 141). Springer.

Opitz, J. M., & Reynolds, J. F. (1985). The developmental field concept. American Journal of Medical Genetics, 21(1), 1–11.

Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics, 6(2), 119.

Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531.

Ørsted, M., Hoffmann, A. A., Sverrisdóttir, E., Nielsen, K. L., & Kristensen, T. N. (2019). Genomic variation predicts adaptive evolutionary responses better than population bottleneck history. PLoS Genetics, 15(6), e1008205.

Osborn, H. F. (1896). From the Greeks to Darwin: an outline of the development of the evolution idea (Vol. 1). Macmillan.

Osborn, H. F. (1922). Orthogenesis as observed from paleontological evidence beginning in the year 1889. The American Naturalist, 56(643), 134–143.

Owen, P. (1863). On the Archeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philosophical Transactions of the Royal Society of London, 153, 33–47.

Ozernyuk, N. D. (2010). Correlation of ontogenetic and evolutionary processes in view of achievements of modern genetics: Role of gene duplication. Biology Bulletin, 37(2), 100–105.

Pi, M. (2017). Darwinism after the modern synthesis. In The Darwinian Tradition in Context (pp. 89–103). Springer.

Pigliucci, M., & Finkelman, L. (2014). The extended (evolutionary) synthesis debate: where science meets philosophy. BioScience, 64(6), 511–516.

Pigliucci, M., & Müller, G. B. (2010). Evolution–the extended synthesis.

Pomiankowski, A. (1987). Sexual selection: the handicap principle does work–sometimes. Proc. R. Soc. Lond. B, 231(1262), 123–145.

Provine, W. B. (1989). Sewall Wright and evolutionary biology. University of Chicago Press.

Purugganan, M. D., & Fuller, D. Q. (2009). The nature of selection during plant domestication. Nature, 457(7231), 843–848.

Raby, P. (2002). Alfred Russel Wallace: A Life. Princeton University Press.

Rojas-Bracho, L., & Jaramillo-Legoretta, A. M. (2009). Vaquita: Phocoena sinus. In Encyclopedia of marine mammals (pp. 1196–1200). Elsevier.

Ross, M. R. (2005). Who believes what? Clearing up confusion over intelligent design and young-Earth creationism. Journal of Geoscience Education, 53(3), 319–323.

Rubin, J. (2013). The Origin of Species: The Making of a Theory. USA: HHMI Biointeractive. Retrieved from https://www.hhmi.org/biointeractive/the-origin-of-species-the-making-of-a-theory

Rutherford, S. L., & Henikoff, S. (2003). Quantitative epigenetics. Nature Genetics, 33(1), 6–8.

Sadava, D., Berenbaum, M., & Hillis, D. (2014). Life the Science of Biology (10th ed.). Sinauer & MacMillian.

Schluter, D. (2000). The ecology of adaptive radiation. OUP Oxford.

Scott, E. C., & Matzke, N. J. (2007). Biological design in science classrooms. Proceedings of the National Academy of Sciences, 104(suppl 1), 8669–8676.

Shah, M. S. (2016). Pre-Darwinian Muslim scholars’ views on evolution.

Shen, T. V. (2015). Evolutionism through Chinese eyes: Yan Fu, Ma Junwu and their translations of Darwinian evolutionism. ASIANetwork Exchange: A Journal for Asian Studies in the Liberal Arts, 22(1), 49–60.

Shermer, M. (2002). In Darwin’s shadow: The life and science of Alfred Russel Wallace: A biographical study on the psychology of history. Oxford University Press on Demand.

Shook, B., Nelson, K., Aguilera, K., & Braff, L. (2019). Forces of Evolution. Explorations.

Singer, C. J. (1931). A short history of biology: a general introduction to the study of living things. Clarendon Press.

Singh, R. S. (2015). Darwin’s legacy II: why biology is not physics, or why it has taken a century to see the dependence of genes on the environment. Genome, 58(1), 55–62.

Siniscalco, M., Bernini, L., Filippi, G., Latte, B., Khan, P. M., Piomelli, S., & Rattazzi, M. (1966). Population genetics of haemoglobin variants, thalassaemia and glucose-6-phosphate dehydrogenase deficiency, with particular reference to the malaria hypothesis. Bulletin of the World Health Organization, 34(3), 379.

Smith, C. H., & Beccaloni, G. (2010). Natural selection and beyond: the intellectual legacy of Alfred Russel Wallace. Oxford University Press.

Smocovitis, V. B. (1997). G. Ledyard Stebbins, Jr. and the evolutionary synthesis (1924–1950). American Journal of Botany, 84(12), 1625–1637.

Smocovitis, V. B. (2006). Keeping up with Dobzhansky: G. Ledyard Stebbins, Jr., plant evolution, and the evolutionary synthesis. History and Philosophy of the Life Sciences, 9–47.

Solbrig, O. T. (1979). George Ledyard Stebbins. In Topics in Plant Population Biology (pp. 1–17). Springer.

Spaethe, J., Schmidt, A., Hickelsberger, A., & Chittka, L. (2001). Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. In Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge University Press.

Spergel, D. N., Verde, L., Peiris, H. V, Komatsu, E., Nolta, M. R., Bennett, C. L., … Kogut, A. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: determination of cosmological parameters. The Astrophysical Journal Supplement Series, 148(1), 175.

Stewart, E. C., & Barber, S. B. (1959). Behavior and Evolution. JSTOR.

Stoltzfus, A. (2017). Why we don’t want another “Synthesis.” Biology Direct, 12(1), 23.

Stott, R. (2012a). Darwin’s ghosts: in search of the first evolutionists. Bloomsbury Publishing.

Stott, R. (2012b). Darwin’s ghosts: the secret history of evolution. Spiegel & Grau.

Sweeney, K. (2002). History of complexity. Complexity and Health Care. An Introduction, 19–35.

Tanghe, K. B., De Tiège, A., Pauwels, L., Blancke, S., & Braeckman, J. (2018). What’s wrong with the modern evolutionary synthesis? A critical reply to Welch (2017). Biology & Philosophy, 33(3–4), 23.

Templeton, A. R. (2013). Biological races in humans. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(3), 262–271.

Thein, K. (2006). The Life Forms and Their Model in Plato’s Timaeus. Rhizai111, 241–273.

THOMSON, K. S. (1969). The biology of the lobe‐finned fishes. Biological Reviews, 44(1), 91–154.

unter Rudolph, G., & Schwefel, H.-P. (1994). Evolution are Algorithmen: Ein robustes Optimierkonzept. Physikalische Bl Atter.

Van Speybroeck, L. (2002). From epigenesis to epigenetics: the case of CH Waddington. Annals of the New York Academy of Sciences, 981(1), 61–81.

Vizcaíno, S. F., Fariña, R. A., & Fernicola, J. C. (2009). Young Darwin and the ecology and extinction of Pleistocene South American fossil mammals. Revista de La Asociación Geológica Argentina, 64(1), 160–169.

Vyas, S. A., & Desai, S. P. (2015). The Professor and the Student, Sir Ronald Aylmer Fisher (1890–1962) and William Sealy Gosset (1876–1937): Careers of two giants in mathematical statistics. Journal of Medical Biography, 23(2), 98–107.

Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 118–126.

Wade, M. J. (2011). The neo-modern synthesis: The confluence of new data and explanatory concepts. American Institute of Biological Sciences Circulation, AIBS, 1313 Dolley ….

Wagner, G. P., & Laubichler, M. D. (2004). Rupert Riedl and the re‐synthesis of evolutionary and developmental biology: body plans and evolvability. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302(1), 92–102.

Walsh, C. (2003). Antibiotics: actions, origins, resistance. American Society for Microbiology (ASM).

Watterson, G. A. (1996). Motoo Kimura’s use of diffusion theory in population genetics. Theoretical Population Biology, 49(2), 154–188.

Weatherall, D. J. (1987). Common genetic disorders of the red cell and the ‘malaria hypothesis.’ Annals of Tropical Medicine & Parasitology, 81(5), 539–548.

Wein, T., & Dagan, T. (2019). The effect of population bottleneck size and selective regime on genetic diversity and evolvability in bacteria. Genome Biology and Evolution, 11(11), 3283–3290.

Weiss, K. M. (2004). Thomas Henry Huxley (1825–1895) puts us in our place. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302(3), 196–206.

Wellnhofer, P. (2010). A short history of research on Archaeopteryx and its relationship with dinosaurs. Geological Society, London, Special Publications, 343(1), 237–250.

Wilde, S. A., Valley, J. W., Peck, W. H., & Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409(6817), 175–178.

Williams-Ellis, A. (1966). Darwin’s moon: A biography of Alfred Russel Wallace. Blackie.

Williams, B. L., Hanifin, C. T., Brodie, E. D., & Brodie III, E. D. (2010). Tetrodotoxin affects survival probability of rough-skinned newts (Taricha granulosa) faced with TTX-resistant garter snake predators (Thamnophis sirtalis). Chemoecology, 20(4), 285–290.

Willumsen, G., Buckner, N., & Neeson, L. (2001a). Evolution: Evolutionary Arms Race. USA: PBS.

Willumsen, G., Buckner, N., & Neeson, L. (2001b). Evolution: Why Sex? Usa: PBS.

Winther, R. G. (2001). August Weismann on germ-plasm variation. Journal of the History of Biology, 34(3), 517–555.

Witham, L. A. (2002). Where Darwin meets the Bible: Creationists and evolutionists in America. Oxford University Press.

Wolf, J. B., Brodie, E. D., & Wade, M. J. (2000). Epistasis and the evolutionary process. Oxford University Press.

Woods, H. (2009). Augustine and evolution: A study in the Saint’s De Genesi ad litteram and De Trinitate. Wipf and Stock Publishers.

Wysong, R. L. (1976). The Creation-evolution Controversy:(implications, Methodology and Survey of Evidence): Toward a Rational Solution. Wysong Institute.

Yergeau, D. A., Cornell, C. N., Parker, S. K., Zhou, Y., & Detrich III, H. W. (2005). bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish. Developmental Biology, 283(1), 97–112.

Yuthavong, Y., & Wilairat, P. (1993). Protection against malaria by thalassaemia and haemoglobin variants. Parasitology Today, 9(7), 241–245.

Zabell, S. L. (2001). Ronald Aylmer Fisher. In Statisticians of the centuries (pp. 389–397). Springer.

Zaffiri, L., Gardner, J., & Toledo-Pereyra, L. H. (2012). History of antibiotics. From salvarsan to cephalosporins. Journal of Investigative Surgery, 25(2), 67–77.

Zahavi, A. (1975). Mate selection—a selection for a handicap. Journal of Theoretical Biology, 53(1), 205–214.

Zeymer, C., & Hilvert, D. (2018). Directed evolution of protein catalysts. Annual Review of Biochemistry, 87, 131–157.

Zhang, P. (2016). The four ecologies, post-evolution and singularity. Explorations in Media Ecology, 15(3–4), 343–354.

Zhang, P. (2018). Mother Pelican. A Journal of Solidarity and Sustainability, 14(2).

Zimmer, C. (2011). Evolution: the triumph of an idea. Random House.

Zirkle, C. (1941). Natural Selection before the" Origin of Species". Proceedings of the American Philosophical Society, 71–123.

Zuckerkandl, E. (2006). Intelligent design and biological complexity. Gene, 385, 2–18.

 

Una síntesis evolutiva más moderna

(Ciencias de Joseleg) (Biología) (Teoría de la Biología) (Teorías de la evolución) (Introducción)  (Generalidades)  (desde Grecia al Islam)  (Naturalistas y escala natural)  (Lamarckismo)  (Darwin y Wallace)  (El origen del darwinismo)  (La selección natural)  (Neodarwinismo)  (Teoría sintética de la evolución)  (Selección sexual)  (Carrera armamentista)  (Extinciones y radiaciones)  (Grandes saltos)  (Deriva genética)  (Aplicaciones)  (Debates sociales)  (Una nueva síntesis)  (Referencias bibliográficas)

 

 La síntesis evolutiva extendida consiste en un conjunto de conceptos teóricos que se argumenta que son más completos que la síntesis moderna anterior de la biología evolutiva que tuvo lugar entre 1918 y 1942. La síntesis evolutiva extendida fue solicitada en la década de 1950 por CH Waddington, argumentado en el base del equilibrio puntuado por Stephen Jay Gould y Niles Eldredge en la década de 1980, y fue reconceptualizado en 2007 por Massimo Pigliucci y Gerd B. Müller.

La síntesis evolutiva ampliada revisa la importancia relativa de los diferentes factores en juego, examinando varios supuestos de la síntesis anterior y ampliándolos con factores causales adicionales pero igual de naturalistas (Laland et al., 2015; Wade, 2011). Incluye selección multinivel, herencia epigenética transgeneracional, construcción de nichos, capacidad de evolución y varios conceptos de la biología evolutiva del desarrollo (Manfred D Laubichler & Renn, 2015; Müller, 2007; Pigliucci & Finkelman, 2014).

No todos los biólogos han coincidido en la necesidad o el alcance de una síntesis ampliada. Muchos han colaborado en otra síntesis en biología del desarrollo evolutivo, que se concentra en la genética molecular del desarrollo y la evolución para comprender cómo la selección natural opera en los procesos de desarrollo y las homologías profundas entre organismos al nivel de genes altamente conservados.

La síntesis  moderna previa

La síntesis moderna fue la síntesis ampliamente aceptada de principios del siglo XX que reconcilia la teoría de la evolución por selección natural de Charles Darwin y la teoría de la genética de Gregor Mendel en un marco matemático conjunto. Estableció la evolución como paradigma central de la biología. Las ideas del siglo XIX sobre la selección natural de Darwin y la genética mendeliana fueron unidas por investigadores que incluyeron a Thomas H. Morgan fundador de la genética moderna y Ronald Fisher, uno de los tres fundadores de la genética de poblaciones, y JBS Haldane y Sewall Wright, entre 1918 y 1932. Julian Huxley introdujo la frase "síntesis moderna" en su libro de 1942, Evolution: The Modern Synthesis (Huxley, 1942).

Sin embargo, este nombre tiene una trampa, moderno significa al modo de hoy, por ende, la síntesis moderna siempre deberá ser la forma mas actualizada del conocimiento genético-evolutivo del momento.

Primeros llamados a la modernización de la síntesis moderna

Durante la década de 1950, el biólogo inglés C. H. Waddington pidió una síntesis ampliada basada en su investigación sobre epigenética y asimilación genética (Rutherford & Henikoff, 2003; Van Speybroeck, 2002; Waddington, 1953). El zoólogo austríaco Rupert Riedl también propuso una síntesis ampliada, con el estudio de la capacidad de evolución (Marchesini & Celentano, 2021; Wagner & Laubichler, 2004).

Equilibrio puntuado

En la década de 1980, los paleontólogos estadounidenses Stephen Jay Gould y Niles Eldredge abogaron por una síntesis ampliada basada en su idea de equilibrio puntuado, el papel de la selección de especies dando forma a patrones evolutivos a gran escala y la selección natural trabajando en múltiples niveles que se extienden de genes a especies (Eldredge, 1985; Stephen J Gould, 1987; Stephen Jay Gould, 1982). El etólogo John Endler escribió un artículo en 1988 en el que analizaba los procesos de evolución que, en su opinión, habían sido descuidados (Endler & McLellan, 1988).

Biología evolutiva del desarrollo

Algunos investigadores en el campo de la biología del desarrollo evolutivo propusieron otra síntesis. Argumentan que las síntesis modernas y extendidas deberían centrarse principalmente en los genes y sugerir una integración de la embriología con la genética molecular y la evolución, con el objetivo de comprender cómo opera la selección natural en la regulación genética y las homologías profundas entre organismos a nivel de genes altamente conservados, factores de transcripción. y vías de señalización (Davidson, 2010). Por el contrario, una rama diferente de evo-devo sugiere que un enfoque de organismo (Bateson, 2005; Gilbert, Opitz, & Raff, 1996; Huneman, 2010) contribuye a la síntesis ampliada al enfatizar (entre otros) el sesgo de desarrollo (Brakefield, 2006), la capacidad de evolución (Brakefield, 2006) y la inherencia de la forma (Hall, 2012; Müller, 2021; Newman & Müller, 2006) como factores primarios en la evolución de estructuras complejas y novedades fenotípicas.

Historia reciente

La idea de una síntesis ampliada fue relanzada en 2007 por Massimo Pigliucci, y Gerd B. Müller, con un libro en 2010 titulado Evolution: The Extended Synthesis (Pigliucci & Müller, 2010), que ha servido como punto de partida para trabajar en la síntesis ampliada. Esto incluye:

·       El papel de las configuraciones previas, las estructuras genómicas y otros rasgos del organismo en la generación de variaciones evolutivas.

·       Cómo la creciente dimensionalidad de los paisajes de fitness afecta nuestra visión de la especiación.

·       El papel de la selección multinivel en las principales transiciones evolutivas.

·       Nuevos tipos de herencia, incluida la herencia cultural y epigenética.

·       La forma en que el desarrollo del organismo y la plasticidad del desarrollo canalizan las vías evolutivas y generan una novedad fenotípica

·       Cómo los organismos modifican los entornos a los que pertenecen a través de la construcción de nichos.

Los proponentes dicen que otros procesos como la capacidad de evolución, la plasticidad fenotípica, la evolución reticulada, la evolución sexual y la simbiogénesis han sido excluidos o no incluidos en la síntesis moderna. El objetivo de la síntesis ampliada de Piglucci y Müller es llevar la evolución más allá del enfoque genético de la genética de poblaciones para considerar enfoques más centrados en el organismo y la ecología. Muchas de estas causas se consideran actualmente secundarias en la causalidad evolutiva, y los defensores de la síntesis ampliada quieren que se consideren causas evolutivas de primera clase. El biólogo Eugene Koonin escribió en 2009 que "los nuevos desarrollos en biología evolutiva de ninguna manera deben verse como una refutación de Darwin. Al contrario, están ampliando los caminos que Darwin abrió hace 150 años y revelan la extraordinaria fertilidad de su pensamiento" (Koonin, 2009)